Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7372, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968302

RESUMO

Mucosal-associated invariant T (MAIT) cells have been implicated in various inflammatory diseases of barrier organs, but so far, their role in kidney disease is unclear. Here we report that MAIT cells that recognize their prototypical ligand, the vitamin B2 intermediate 5-OP-RU presented by MR1, reside in human and mouse kidneys. Single cell RNAseq analysis reveals several intrarenal MAIT subsets, and one, carrying the genetic fingerprint of tissue-resident MAIT17 cells, is activated and expanded in a murine model of crescentic glomerulonephritis (cGN). An equivalent subset is also present in kidney biopsies of patients with anti-neutrophil cytoplasmatic antibody (ANCA)-associated cGN. MAIT cell-deficient MR1 mice show aggravated disease, whereas B6-MAITCAST mice, harboring higher MAIT cell numbers, are protected from cGN. The expanded MAIT17 cells express anti-inflammatory mediators known to suppress cGN, such as CTLA-4, PD-1, and TGF-ß. Interactome analysis predicts CXCR6 - CXCL16-mediated cross-talk with renal mononuclear phagocytes, known to drive cGN progression. In line, we find that cGN is aggravated upon CXCL16 blockade. Finally, we present an optimized 5-OP-RU synthesis method which we apply to attenuating cGN in mice. In summary, we propose that CXCR6+ MAIT cells might play a protective role in cGN, implicating them as a potential target for anti-inflammatory therapies.


Assuntos
Nefropatias , Células T Invariantes Associadas à Mucosa , Humanos , Animais , Camundongos , Células Mieloides/metabolismo , Nefropatias/metabolismo , Anti-Inflamatórios/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo
2.
Brain Commun ; 4(1): fcab292, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993476

RESUMO

Although most of the progressive multifocal leukoencephalopathy cases in sarcoidosis patients are explained by the treatment with immunosuppressive drugs, it is also reported in treatment-naive sarcoidosis patients, which implies a general predisposition of sarcoidosis patients for progressive multifocal leukoencephalopathy. Indeed, it was shown that active sarcoidosis patients have increased regulatory T cell frequencies which could lead to a subsequent systemic immunosuppression. However, if sarcoidosis with systemic changes of T cell subsets frequencies constitute a risk factor for the development of progressive multifocal leukoencephalopathy, which could then be counteracted by sarcoidosis treatment, is not known. In this cohort study, we included, characterized and followed-up six patients with bioptically confirmed definite progressive multifocal leukoencephalopathy and definite or probable sarcoidosis presenting between April 2013 and January 2019, four of them had no immunosuppressive therapy at the time of developing first progressive multifocal leukoencephalopathy symptoms. Analysis of immune cell subsets in these patients revealed significant imbalances of CD4+ T cell and regulatory T cell frequencies. Due to the progression of progressive multifocal leukoencephalopathy in four patients, we decided to treat sarcoidosis anticipating normalization of immune cell subset frequencies and thereby improving progressive multifocal leukoencephalopathy. Notably, by treatment with infliximab, an antibody directed against tumour necrosis factor-α, three patients continuously improved clinically, JC virus was no longer detectable in the cerebrospinal fluid and regulatory T cell frequencies decreased. One patient was initially misdiagnosed as neurosarcoidosis and died 9 weeks after treatment initiation due to aspiration pneumonia. Our study provides insight that sarcoidosis can lead to changes in T cell subset frequencies, which predisposes to progressive multifocal leukoencephalopathy. Although immunosuppressive drugs should be avoided in progressive multifocal leukoencephalopathy, paradoxically in patients with sarcoidosis treatment with the immunosuppressive infliximab might restore normal T cell distribution and thereby halt progressive multifocal leukoencephalopathy progression.

3.
Med ; 2(3): 296-312.e8, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33748804

RESUMO

BACKGROUND: Multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), can be suppressed in its early stages but eventually becomes clinically progressive and unresponsive to therapy. Here, we investigate whether the therapeutic resistance of progressive MS can be attributed to chronic immune cell accumulation behind the blood-brain barrier (BBB). METHODS: We systematically track CNS-homing immune cells in the peripheral blood of 31 MS patients and 31 matched healthy individuals in an integrated analysis of 497,705 single-cell transcriptomes and 355,433 surface protein profiles from 71 samples. Through spatial RNA sequencing, we localize these cells in post mortem brain tissue of 6 progressive MS patients contrasted against 4 control brains (20 samples, 85,000 spot transcriptomes). FINDINGS: We identify a specific pathogenic CD161+/lymphotoxin beta (LTB)+ T cell population that resides in brains of progressive MS patients. Intriguingly, our data suggest that the colonization of the CNS by these T cells may begin earlier in the disease course, as they can be mobilized to the blood by usage of the integrin-blocking antibody natalizumab in relapsing-remitting MS patients. CONCLUSIONS: As a consequence, we lay the groundwork for a therapeutic strategy to deplete CNS-homing T cells before they can fuel treatment-resistant progression. FUNDING: This study was supported by funding from the University Medical Center Hamburg-Eppendorf, the Stifterverband für die Deutsche Wissenschaft, the OAK Foundation, Medical Research Council UK, and Wellcome.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Sistema Nervoso Central/patologia , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/uso terapêutico , Linfócitos T/patologia
4.
Cell Biol Toxicol ; 37(2): 229-243, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32564278

RESUMO

The embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting. Graphical abstract •The embryonic stem cell test to predict teratogenicity was made automation-compatible. •Several key improvements to the assay procedure have been introduced to increase performance. •The workflow was adapted to human iPS cells and isogenic fibroblast donor cells.


Assuntos
Desenvolvimento Embrionário , Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes/metabolismo , Reprodução , Bibliotecas de Moléculas Pequenas/farmacologia , Testes de Toxicidade , Trifosfato de Adenosina/farmacologia , Animais , Automação , Bioensaio , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Células NIH 3T3 , Células-Tronco Pluripotentes/efeitos dos fármacos , Reprodução/efeitos dos fármacos
5.
Cell Rep ; 29(4): 810-815.e4, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644905

RESUMO

Identifying T cell clones associated with human autoimmunity has remained challenging. Intriguingly, many autoimmune diseases, including multiple sclerosis (MS), show strongly diminished activity during pregnancy, providing a unique research paradigm to explore dynamics of immune repertoire changes during active and inactive disease. Here, we characterize immunomodulation at the single-clone level by sequencing the T cell repertoire in healthy women and female MS patients over the course of pregnancy. Clonality is significantly reduced from the first to third trimester in MS patients, indicating that the T cell repertoire becomes less dominated by expanded clones. However, only a few T cell clones are substantially modulated during pregnancy in each patient. Moreover, relapse-associated T cell clones identified in an individual patient contract during pregnancy and expand during a postpartum relapse. Our data provide evidence that profiling the T cell repertoire during pregnancy could serve as a tool to discover and track "private" T cell clones associated with disease activity in autoimmunity.


Assuntos
Esclerose Múltipla/sangue , Complicações na Gravidez/sangue , Linfócitos T/imunologia , Adulto , Biomarcadores/sangue , Feminino , Humanos , Imunofenotipagem , Esclerose Múltipla/complicações , Esclerose Múltipla/imunologia , Gravidez , Complicações na Gravidez/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/classificação
6.
Semin Immunopathol ; 41(2): 177-188, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30361800

RESUMO

Stronger adaptive immune responses in females can be observed in different mammals, resulting in better control of infections compared to males. However, this presumably evolutionary difference likely also drives higher incidence of autoimmune diseases observed in humans. Here, we summarize sex differences in the most common autoimmune diseases of the central nervous system (CNS) and discuss recent advances in the understanding of possible underlying immunological and CNS intrinsic mechanisms. In multiple sclerosis (MS), the most common inflammatory disease of the CNS, but also in rarer conditions, such as neuromyelitis optica spectrum disorders (NMOSD) or neuronal autoantibody-mediated autoimmune encephalitis (AE), sex is one of the top risk factors, with women being more often affected than men. Immunological mechanisms driving the sex bias in autoimmune CNS diseases are complex and include hormonal as well as genetic and epigenetic effects, which could also be exerted indirectly via modulation of the microbiome. Furthermore, CNS intrinsic differences could underlie the sex bias in autoimmunity by differential responses to injury. The strong effects of sex on incidence and possibly also activity and progression of autoimmune CNS disorders suggest that treatments need to be tailored to each sex to optimize efficacy. To date, however, due to a lack of systematic studies on treatment responses in males versus females, evidence in this area is still sparse. We argue that studies taking sex differences into account could pave the way for sex-specific and therefore personalized treatment.


Assuntos
Sistema Nervoso Central/imunologia , Encefalite/imunologia , Doença de Hashimoto/imunologia , Esclerose Múltipla/imunologia , Neuromielite Óptica/imunologia , Caracteres Sexuais , Animais , Autoanticorpos/imunologia , Sistema Nervoso Central/patologia , Encefalite/epidemiologia , Encefalite/patologia , Feminino , Doença de Hashimoto/epidemiologia , Doença de Hashimoto/patologia , Humanos , Incidência , Masculino , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/patologia , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/patologia
7.
Front Hum Neurosci ; 12: 226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915533

RESUMO

Primary progressive multiple sclerosis (PPMS) shows a highly variable disease progression with poor prognosis and a characteristic accumulation of disabilities in patients. These hallmarks of PPMS make it difficult to diagnose and currently impossible to efficiently treat. This study aimed to identify plasma metabolite profiles that allow diagnosis of PPMS and its differentiation from the relapsing-remitting subtype (RRMS), primary neurodegenerative disease (Parkinson's disease, PD), and healthy controls (HCs) and that significantly change during the disease course and could serve as surrogate markers of multiple sclerosis (MS)-associated neurodegeneration over time. We applied untargeted high-resolution metabolomics to plasma samples to identify PPMS-specific signatures, validated our findings in independent sex- and age-matched PPMS and HC cohorts and built discriminatory models by partial least square discriminant analysis (PLS-DA). This signature was compared to sex- and age-matched RRMS patients, to patients with PD and HC. Finally, we investigated these metabolites in a longitudinal cohort of PPMS patients over a 24-month period. PLS-DA yielded predictive models for classification along with a set of 20 PPMS-specific informative metabolite markers. These metabolites suggest disease-specific alterations in glycerophospholipid and linoleic acid pathways. Notably, the glycerophospholipid LysoPC(20:0) significantly decreased during the observation period. These findings show potential for diagnosis and disease course monitoring, and might serve as biomarkers to assess treatment efficacy in future clinical trials for neuroprotective MS therapies.

8.
Front Immunol ; 9: 291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515587

RESUMO

While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case-control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/- cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vß repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR ß chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.


Assuntos
Transtorno Depressivo Maior/imunologia , Neuroimunomodulação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Adulto , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Subpopulações de Linfócitos T/imunologia
9.
J Immunol ; 200(3): 974-982, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298833

RESUMO

Multiple sclerosis (MS) is a T cell-driven inflammatory disease of the CNS. Research on T cell subsets involved in MS pathogenesis has mainly focused on classical CD4+ T cells, especially Th17 cells, as they produce the proinflammatory, MS-associated cytokine IL-17. However, the abundant unconventional mucosal-associated invariant T (MAIT) cells are also able to produce IL-17. MAIT cells are characterized by high CD161 expression and a semi-invariant Vα7.2 TCR, with which they recognize bacterial and yeast Ags derived from the riboflavin (vitamin B2) metabolism. In this study, we characterized MAIT cells from the peripheral blood of MS patients in comparison with healthy individuals with respect to their type-17 differentiation. We found a specific increase of IL-17+ MAIT cells as well as an increased expression of retinoic acid-related orphan receptor (ROR)γt and CCR6 in MAIT cells from MS patients, whereas the expression of T cell activation markers HLA-DR and CD38 was not different. IL-17 production by MAIT cells furthermore correlated with the surface expression level of the IL-7 receptor α-chain (CD127), which was significantly increased on MAIT cells from MS patients in comparison with healthy individuals. In summary, our findings indicate an augmented type-17 differentiation of MAIT cells in MS patients associated with their IL-7 receptor surface expression, implicating a proinflammatory role of these unconventional T cells in MS immunopathology.


Assuntos
Sistema Nervoso Central/patologia , Interleucina-17/biossíntese , Subunidade alfa de Receptor de Interleucina-7/biossíntese , Células T Invariantes Associadas à Mucosa/imunologia , Esclerose Múltipla/patologia , ADP-Ribosil Ciclase 1/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Sistema Nervoso Central/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/biossíntese , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Esclerose Múltipla/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/biossíntese , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CCR6/biossíntese , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia , Proteínas Supressoras de Tumor/metabolismo
10.
Sci Immunol ; 1(3): eaaf8665, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28783680

RESUMO

Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses.

11.
Brain ; 138(Pt 11): 3263-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26359290

RESUMO

Recent association studies have linked numerous genetic variants with an increased risk for multiple sclerosis, although their functional relevance remains largely unknown. Here we investigated phenotypical and functional consequences of a genetic variant in the CD226 gene that, among other autoimmune diseases, predisposes to multiple sclerosis. Phenotypically, effector and regulatory CD4(+) memory T cells of healthy individuals carrying the predisposing CD226 genetic variant showed, in comparison to carriers of the protective variant, reduced surface expression of CD226 and an impaired induction of CD226 after stimulation. This haplotype-dependent reduction in CD226 expression on memory T cells was abrogated in patients with multiple sclerosis, as CD226 expression was comparable to healthy risk haplotype carriers irrespective of genetic variant. Functionally, FOXP3-positive regulatory T cells from healthy carriers of the genetic protective variant showed superior suppressive capacity, which was again abrogated in multiple sclerosis patients. Mimicking the phenotype of human CD226 genetic risk variant carriers, regulatory T cells derived from Cd226-deficient mice showed similarly reduced inhibitory activity, eventually resulting in an exacerbated disease course of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. Therefore, by combining human and mouse analyses we show that CD226 exhibits an important role in the activation of regulatory T cells, with its genetically imposed dysregulation impairing regulatory T cell function.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Esclerose Múltipla/genética , RNA Mensageiro/metabolismo , Linfócitos T Reguladores/imunologia , Adulto , Animais , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Predisposição Genética para Doença , Haplótipos , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Linfócitos T Reguladores/metabolismo
12.
Eur J Immunol ; 44(10): 3119-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043505

RESUMO

Recent findings indicate a pathogenic involvement of IL-17-producing CD8(+) T cells in multiple sclerosis (MS). IL-17 production has been attributed to a subset of CD8(+) T cells that belong to the mucosal-associated invariant T (MAIT) cell population. Here, we report a reduction of CD8(+) MAIT cells in the blood of MS patients compared with healthy individuals, which significantly correlated with IL-18 serum levels in MS patients. In vitro stimulation of peripheral blood mononuclear cells from healthy individuals and MS patients with IL-18 specifically activated CD8(+) MAIT cells. Moreover, IL-18 together with T-cell receptor stimulation induced, specifically on CD8(+) MAIT cells, an upregulation of the integrin very late antigen-4 that is essential for the infiltration of CD8(+) T cells into the CNS. Notably, we were able to identify CD8(+) MAIT cells in MS brain lesions by immunohistochemistry while they were almost absent in the cerebrospinal fluid (CSF). In summary, our findings indicate that an IL-18-driven activation of CD8(+) MAIT cells contributes to their CNS infiltration in MS, in turn leading to reduced CD8(+) MAIT-cell frequencies in the blood. Therefore, CD8(+) MAIT cells seem to play a role in the innate arm of immunopathology in MS.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-18/sangue , Esclerose Múltipla/imunologia , Subpopulações de Linfócitos T/imunologia , Quimiotaxia de Leucócito , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia
13.
Curr Opin Neurol ; 25(3): 316-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22547102

RESUMO

PURPOSE OF REVIEW: In central nervous system (CNS) autoimmune disorders, CD8+ T cells have been reported to exert cytotoxic as well as regulatory functions. In virus-induced (meningo) encephalitis, they are essential for viral clearance, but can also cause severe immunopathology. This review aims to summarize the multifaceted roles CD8+ T cells can play in inflammatory CNS disorders. RECENT FINDINGS: Recent evidence for a role of CD8+ T cells in multiple sclerosis comes from genetic association studies confirming a protective effect of the HLA-A0201 allele. Besides their dominance in white matter lesions, CD8+ T cells contribute to immune infiltrates in cortical demyelinating lesions. Having infiltrated the CNS, CD8+ T cells migrate along an inflammation-induced fibrous network. Although CD8+ T cells are generally considered to be crucial for acute viral clearance, they can also induce autoimmune-like immunopathology by, for example, encountering a virus in adulthood while being at the same time latently infected by a related virus. Inadequate control of latent viruses under immunosuppressive treatments or immunodeficiencies is becoming increasingly important in neurology clinical work. SUMMARY: Future research should aim at identifying the specificity and functional phenotype of brain-infiltrating CD8+ T cells in autoimmune diseases and viral immunopathology in order to develop therapeutic strategies specifically targeting CNS-relevant immune reactions.


Assuntos
Doenças Autoimunes do Sistema Nervoso/imunologia , Linfócitos T CD8-Positivos/fisiologia , Doenças do Sistema Nervoso Central/imunologia , Diferenciação Celular , Movimento Celular , Doenças do Sistema Nervoso Central/complicações , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/virologia , Humanos
14.
Am J Physiol Regul Integr Comp Physiol ; 292(6): R2318-27, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17332162

RESUMO

Amiloride-sensitive Na+ absorption is a well-described feature of numerous transporting epithelia in vertebrates. Yet, very little is known about this important physiological process regarding invertebrates. In the present paper, we compare vertebrate Na+ absorption mediated by the amiloride-sensitive epithelial Na+ channel (ENaC) and its invertebrate counterpart. We used the dorsal skin of the annelid Hirudo medicinalis as a model for the Na+ absorption of invertebrate epithelia. In applying electrophysiological, molecular, and biochemical techniques we found striking functional and structural differences between vertebrate and invertebrate amiloride-sensitive Na+ absorption. Using modified Ussing chambers, we analyzed the influence of different known blockers and effectors of vertebrate ENaC on leech epithelial Na+ absorption. We demonstrate that the serine protease trypsin had no effect on the Na+ transport across leech integument, while it strongly activates vertebrate ENaC. While protons, and the divalent cations Ni2+ and Zn2+ stimulate vertebrate ENaC, amiloride-sensitive Na+ currents in leech integument were substantially reduced. For molecular studies, we constructed a cDNA library of Hirudo medicinalis and screened it with specific ENaC antibodies. We performed numerous PCR approaches using a vast number of different degenerated and specific ENaC primers to identify ENaC-like structures. Yet, both strategies did not reveal any ENaC-like sequence in leech integument. From these data we conclude that amiloride-sensitive Na+ absorption in leech skin is not mediated by an ENaC-like Na+ channel but by a still unknown invertebrate member of the ENaC/DEG family that we termed lENaTP (leech epithelial Na+ transporting protein).


Assuntos
Amilorida/administração & dosagem , Canais Epiteliais de Sódio/fisiologia , Hirudo medicinalis/fisiologia , Ativação do Canal Iônico/fisiologia , Absorção Cutânea/fisiologia , Sódio/farmacocinética , Vertebrados/fisiologia , Animais , Canais Epiteliais de Sódio/efeitos dos fármacos , Hirudo medicinalis/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...